Ардуино: управление двигателем постоянного тока, L293D

Двигатели есть практически в каждом роботе. В одних роботах они приводят в действие колеса, заставляя машину перемещаться в нужном направлении. В других — двигатели крутят пропеллеры, создавая вертикальную тягу для полета. Двигатели позволяют вращаться суставам промышленного робота-манипулятора, и перемещают каретку 3D-принтера . В общем, без хорошего двигателя робота не сделать.

Существует множество типов двигателей. К самым распространенным в робототехнике можно отнести двигатель постоянного тока, шаговый двигатель, и бесколлекторный двигатель. У каждого типа есть свои особенности, плюсы и минусы. Одни больше подходят для точных перемещений, другие позволяют легко поднять в небо мультикоптер. Под каждый проект нужно тщательно выбирать нужный тип двигателей.DSC01178

На этом уроке мы разберем, как управлять двигателем постоянного тока (DC Motor). Двигатели этого типа части применяются в роботах на колесных и гусеничных платформах. И начнем мы с самого простого способа управления.

1. Транзистор

Каждый начинающий робототехник сталкивается с проблемой подключения двигателя к микроконтроллеру. Пройдя урок по управлению светодиодом кажется, что с двигателем можно поступить точно также: подключить его к цифровым выводам Ардуино, а затем включать и выключать по программе. Но не тут-то было. Даже небольшой двигатель, часто используемый в разного рода игрушках, для своей работы требует ток силой от 200 мА до 1 Ампера. А цифровой выход Arduino может дать нам только 20мА. Большинству мощных двигателей требуется напряжение более 5 Вольт, привычных для Ардуино. Распространены двигатели на 12, на 24 и на 48 Вольт. Другими словами, Ардуино очень слаба для прямого управления двигателями. Нужен какой-то мощный посредник!

Самый простой посредник — это транзистор. Подойдут и полевые транзисторы, и биполярные, работающие в режиме ключа. Ниже представлена схема управления двигателем при помощи  биполярного NPN транзистора.

trans_схема

Как видим, схема очень простая. Подаем на базу транзистора слабый сигнал от Arduino через резистор 1кОм, вследствие чего транзистор открывает мощный канал, по которому ток проходит от плюса к минусу, через двигатель. По сути, мы получили примитивный драйвер двигателя!

В цепи обязательно нужно поставить защитный диод, например 1N4001 или 1N4007. Этот диод не даст сгореть транзистору и контроллеру в момент остановки двигателя, когда ЭДС самоиндукции создаст на обмотках скачок напряжения.

В этой схеме можем использовать, например, NPN транзистор 2N2222A. Этот биполярный транзистор может управлять током до 1А и напряжением до 40В, так что его можно вполне использовать для небольших роботов. Российский аналог данного транзистора — КТ315.

С помощью одного транзистора мы можем включать и выключать двигатель постоянного тока в одном направлении. Но колесный робот должен передвигаться и в одну сторону, и в другую. Что делать? Нужен более продвинутый драйвер.

2. H-мост

Составив транзисторы определенным образом, мы получим устройство для управления вращением двигателя в обе стороны. Такое устройство называется H-мост. Вот так выглядит H-мост на биполярных транзисторах:

h-bridge-circuit-600w

INA и INB на рисунке — это вход слабых управляющих сигналов. В случае Ардуино, на них необходимо подавать либо 0 (земля) либо +5В. VCC — это питание двигателей, оно может быть во много раз выше напряжения управляющего сигнала. GND — это земля, общая для Ардуино и H-моста.

В зависимости от того, на какой из входов мы подаем положительный сигнал, двигатель будет крутиться в одну или в другу сторону. Как правило, в схему драйвера двигателя постоянного тока помимо самого H-моста, добавляют защитные диоды, фильтры, опторазвязки и прочие улучшения.

3. Микросхема драйвера L293D

Разумеется, необязательно собирать драйвер двигателя вручную из отдельных транзисторов. Существует множество готовых микросхем, которые позволяют управлять разными типами двигателей. Мы рассмотри распространенный драйвер L293D.

l293d1

Микросхема представляет собой два H-моста, а значит можно управлять сразу двумя двигателями. Каждый мост снабжен четырьмя защитными диодами и защитой от перегрева. Максимальный ток, который может передать L293D на двигатель — 1.2А. Рабочий ток — 600мА. Максимальное напряжение — 36 В.

4. Подключение

Микросхема L293D имеет DIP корпус с 16-ю выводами. Схема выводов ниже.

learn_arduino_L293D

Помним, что отсчет выводов ведется против часовой стрелки и начинается от выемки в корпусе микросхемы.

  • +V — питание микросхема, 5В;
  • +Vmotor — питание двигателей, до 36В;
  • 0V — земля;
  • En1, En2 — выводы включения/выключения H-мостов;
  • In1, In2 — управляющие выводы первого H-моста;
  • Out1, Out2 — выводы для подключения первого двигателя;
  • In3, In4 — управляющие выводы второго H-моста;
  • Out3, Out4 — выводы для подключения второго двигателя.

Выводы En1 и En2 служат для отключения или включения мостов. Если мы подаем 0 на En, соответствующий мост полностью выключается и двигатель перестает вращаться. Эти сигналы пригодятся нам для управления тягой двигателя при помощи ШИМ сигнала.

Схема подключения к Ардуино Уно

Драйвер L293D In1 In2 In3 In4 En1 En2 V+ Vmotor+ 0V
Arduino Uno 7 8 2 3 6 5 +5V +5V GND

Для пример, подключим по этой схеме всего один двигатель. Задействуем выводы драйвера In3, In4 и En2. Принципиальная схема подключения будет выглядеть следующим образом:

l293d_half_схема

Внешний вид макета

l293d_half_bb

5. Программа

Напишем простую программу, которая будет вращать двигатель, меняя направление каждую секунду.

const int in3 = 2;
const int in4 = 3;
const int en2 = 5;

void setup() {
    pinMode(in3, OUTPUT);
    pinMode(in4, OUTPUT);
    pinMode(en2, OUTPUT);

    analogWrite(en2, 255);
}

void loop() {
    digitalWrite(in3, LOW);
    digitalWrite(in4, HIGH);
    delay(1000);
    digitalWrite(in3, HIGH);
    digitalWrite(in4, LOW);
    delay(1000);
}

Функция analogWrite с помощью ШИМ сигнала управляет мощностью двигателя. В этой программе мы командуем драйверу вращать двигатель с максимальной скоростью, что соответствует ШИМ сигналу — 255. Здесь следует отметить, что уменьшение ШИМ сигнала в два раза не даст в два раза меньшую скорость. Скорость и тяга двигателей постоянного тока зависят от входного напряжения нелинейно.

Теперь усложним программу. Будем кроме направления менять еще и мощность.

const int in3 = 2;
const int in4 = 3;
const int en2 = 5;

void setup() {
 pinMode(in3, OUTPUT);
 pinMode(in4, OUTPUT);
 pinMode(en2, OUTPUT);
}

void loop() {
    digitalWrite(in3, HIGH);
    digitalWrite(in4, LOW);

    analogWrite(en2, 150);
    delay(2000);
    analogWrite(en2, 255);
    delay(2000);

    digitalWrite(in3, LOW);
    digitalWrite(in4, HIGH);

    analogWrite(en2, 150);
    delay(2000);
    analogWrite(en2, 255);
    delay(2000);
}

Вот что получится в итоге. Сначала мотор вращается с небольшой скоростью, затем выходит на максимальные обороты, и повторяет все в обратном направлении. На видео мы крутим распространенный двигатель постоянного тока CH1 с колесом. Такие часто применяют в учебных роботах.

Задания

Теперь, когда стало немного понятнее как управлять обычными двигателями постоянного тока, попробуем выполнить несколько заданий на базе самого простого робота на двух колесах.

  1. Собрать драйвер на основе одного NPN транзистора, и вращать с помощью него мотор.
  2. Управлять сразу двумя моторами при помощи L293D, передавая на них разную мощность.
  3. Собрать колесного робота, и заставить его двигаться по окружности.
  4. Заставить колесного робота двигаться по спирали.

В следующем уроке на тему двигателей изучим работу энкодеров, которые позволят сделать управление более точным и помогут сделать сервопривод своими руками.


Изменено:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>