Ардуино: датчик давления BMP180 (BMP085)

Барометр — это устройство, которое измеряет атмосферное давление. То есть давление воздуха, который давит на нас со всех сторон. Еще со школы мы знаем, что первый барометр представлял собой тарелку с ртутью, и перевернутой пробиркой в ней. Автором этого устройства был Эванджели́ста Торриче́лли — итальянский физик и математик. Снять показания ртутного барометра можно так же просто, как и показания спиртового термометра: чем давление снаружи колбы больше, тем выше столбик ртути внутри неё. Пары ртути, как известно, весьма ядовиты.

Позже, появился более безопасный прибор — барометр-анероид. В этом барометре ртуть была заменена на гофрированную коробку из тонкой жести, в которой создано разрежение. Под воздействием атмосферы, коробочка сжимается и через систему рычагов поворачивает стрелку на циферблате. Вот так выглядят эти два барометра. Слева — анероид, справа — барометр Торричелли.

1bar

Зачем нам может понадобиться барометр? Чаще всего, этот прибор используют на летательных аппаратах для определения высоты полета. Чем выше аппарат поднимается над уровнем моря, тем меньшее давление испытывает бортовой барометр. Зная эту зависимость, легко определить высоту.

GIA_13_22

Другой распространенный вариант использования — самодельная погодная станция. В этом случае мы можем использовать известные зависимости грядущей погоды от атмосферного давления. Помимо барометра, на такие станции ставят датчики влажности и температуры.

1. Электронный барометр

Такие громоздкие барометры мы не сможем использовать в робототехнике. Нам нужен миниатюрный и энергоэффективный прибор, который легко подключается к той же Ардуино Уно. Большинство современных барометров делают по технологии МЭМС, так же как и гиротахометры с акселерометрами. МЭМС барометры основаны на пьезорезистивном, либо на тензометрическом методе, в которых используется эффект изменения сопротивления материала под действием деформирующих сил.

Если открыть корпус МЭМС барометра, можно увидеть чувствительный элемент (справа), который находится прямо под отверстием в защитном корпусе прибора, и плату управления (слева), которая осуществляет первичную фильтрацию и преобразование измерений.

box

2. Датчики BMP085 и BMP180

К самым доступным датчикам давления, которые часто используются полетных контроллерах и в разного рода самодельных электронных устройствах, можно отнести датчики компании BOSH: BMP085 и BMP180. Второй барометр более новый, но полностью совместимый со старой версией.

pres_bmp180

Немного важны характеристик BMP180:

  • диапазон измеряемых значений: от 300 гПа до 1100 гПа  (от -500м от +9000м над уровнем моря);
  • напряжение питания: от 3.3 до 5 Вольт;
    сила тока: 5 мкА при скорости опроса — 1 Герц;
  • уровень шума: 0.06 гПа (0.5м) в грубом режиме (ultra low power mode) и 0.02 гПа (0.17м) а режиме максимального разрешения (advanced resolution mode).

Теперь подключим этот датчик к контроллеру, и попробуем оценить атмосферное давление.

3. Подключение BMP180

Оба датчика имеют I2C интерфейс, так что их без проблем можно подключить к любой платформе из семейства Ардуино. Вот как выглядит таблица подключения к Ардуино Уно.

BMP 180 GND VCC SDA SDL
Ардуино Уно GND +5V A4 A5

Принципиальная схема

bmp180_схема

Внешний вид макета

bmp180_bb

4. Программа

Для работы с датчиком нам понадобится библиотека: BMP180_Breakout_Arduino_Library

Скачиваем её из репозитория, и устанавливаем в Arduino IDE. Теперь все готово для написания первой программы. Попробуем получить сырые данные из датчика, и вывести их в монитор COM порта.

#include <SFE_BMP180.h>
#include <Wire.h>

SFE_BMP180 pressure;

void setup(){
    Serial.begin(9600);
    pressure.begin();
}

void loop(){
    double P;
    P = getPressure();
    Serial.println(P, 4); 
    delay(100);
}

double getPressure(){
    char status;
    double T,P,p0,a;

    status = pressure.startTemperature();
    if (status != 0){
        // ожидание замера температуры
        delay(status);
        status = pressure.getTemperature(T);
        if (status != 0){
            status = pressure.startPressure(3);
            if (status != 0){
                // ожидание замера давления
                delay(status);
                status = pressure.getPressure(P,T);
                if (status != 0){
                    return(P);
                }
            }
        }
    }
}

Процедура получения заветного давления из датчика не такая тривиальная, и состоит из нескольких этапов. В упрощенном виде алгоритм выглядит так:

  1. запрашиваем у барометра показания встроенного датчика температуры;
  2. ждем время A, пока датчик оценивает температуру;
  3. получаем температуру;
  4. запрашиваем у барометра давление;
  5. ждем время B, пока датчик оценивает давление;
  6. получаем значение давления;
  7. возвращаем значение давления из функции.

Время B зависит от точности измерений, которая задается в функции startPressure. Единственный аргумент этой функции может принимать значения от 0 до 3, где 0 — самая грубая и самая быстрая оценка, 3 — самая точная оценка давления.

Загружаем программу на Ардуино Уно, и наблюдаем поток измерений атмосферного давления. Попробуем поднять датчик над головой, и опустить до уровня пола. Показания будут немного меняться. Осталось только разобраться, как нам преобразовать эти непонятные числа в высоту над уровнем моря.

5. Преобразование давления в высоту над уровнем моря

Датчик BMP180 возвращает величину давления в гектопаскалях (гПа). Именно в этих единицах принято измерять атмосферное давление. 1 гПа = 100 Паскалей. Известно, что на уровне моря давление в среднем составляет 1013 гПа, и каждый дополнительный метр над уровнем моря будет уменьшать это давление всего на 0.11 гПа (примерно).

Таким образом, если мы вычтем из результата функции getPressure число 1013, и разделим оставшуюся разность на 0.11, то мы получим значение высоты над уровнем моря в метрах. Вот так изменится наша программа:

void loop(){
    double P, Alt;
    P = getPressure();
    Alt = (P - 1013)/0.11;
    Serial.println(Alt, 2); 
    delay(100);
}

В действительности, давление зависит от высоты над уровнем моря нелинейно, и наша формула годится лишь для высот на которых мы с вами обычно живем. Благо, человечеству известная более точная зависимость давления от высоты, которую мы можем применить для получения более точных результатов.

for

Здесь p — измеренное в данной точке давление, p0 — давление относительно которого идет отсчет высоты.

В библиотеке SFE_BMP180 уже есть функция, которая использует указанную. формулу для получения точной высоты. Используем её в нашей программе.

#include <SFE_BMP180.h>
#include <Wire.h>

SFE_BMP180 pressure;
double P0 = 0;

void setup(){
    Serial.begin(9600);
    pressure.begin();
    P0 = pressure.getPressure();
}

void loop(){
    double P, Alt;
    P = getPressure();
    Alt = pressure.altitude(P,P0)
    Serial.println(Alt, 2); 
    delay(100);
}

double getPressure(){
    ...
}

Я не стал полностью копировать функцию getPressure, чтобы сохранить читабельность текста.

В программе появилась еще одна переменная P0 — это давление, которое мы измерим на старте программы. В случае летательного аппарата, P0 будет давлением на взлетной площадке, относительно которой мы начнем набор высоты.

6. Визуализация

Теперь попробуем отобразить показания давления в программе SFMonitor, и посмотрим как меняется давление при движении датчика на высоту 2 метра.

static const byte PACKET_SIZE = 1;
static const byte VALUE_SIZE = 2;
static const boolean SEPARATE_VALUES = true;

#include <SerialFlow.h>
#include <SFE_BMP180.h>
#include <Wire.h>

SFE_BMP180 pressure;
SerialFlow rd(&Serial);
double P0 = 0;

void setup(){
    rd.setPacketFormat(VALUE_SIZE, PACKET_SIZE, SEPARATE_VALUES);
    rd.begin(9600);
    pressure.begin();
    P0 = getPressure();
}

void loop(){
    double P;
    P = getPressure();
    rd.setPacketValue(100+int((P - P0)*100));
    rd.sendPacket();
    delay(100);
}

double getPressure(){
    ...
}

В результате работы программы получим график давления в Паскалях:

main

7. Заключение

Как мы уяснили из урока, определение высоты над уровнем моря не такая тривиальная задача. Мало того, что давление зависит от высоты нелинейно, так еще картину портят различные внешние факторы. Например, давление  у нас дома постоянно меняется с течением времени. Даже за несколько минут, высота измеренная нашим прибором может варьироваться в диапазоне 0.5 — 1 метра. Температура так же сильно влияет на качество измерений, поэтому нам приходится учитывать её при расчете давления.

Для летательных аппаратов рекомендуется использовать датчики повышенной точности, такие как MS5611. У этого барометра точность измерений может достигать 0,012 гПа, что в 5 раз лучше, чем у BMP180. Также, для уточнения барометрической высоты полета применяют координаты GPS.

Успехов в наблюдении за атмосферой! :)


Изменено:

Ардуино: датчик давления BMP180 (BMP085): 5 комментариев

  1. >напряжение питания: от 1.8 до 3.6В (VDD) и от 1.62 до 3.6В (VDDIO);
    Подключаем 5В???))) Логично!)))

    • Андрей, действительно неувязка! На самом деле на модуле есть линейный стабилизатор напряжения, так что он легко питается и от 5 Вольт. А характеристики в статье указаны для самого чипа.

      • Буду знать, спасибо за разъяснение! В других статьях подключают 3.3 В, как я и сделал.

  2. А почему так скачет показатель давления? Как с этим бороться? Ведь давление в реале не мот так хаотично скакать

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>