Генератор электрических импульсов на таймере 555

Электрический импульс — это кратковременный всплеск напряжения или силы тока. То есть это такое событие в цепи, при котором напряжение резко повышается в несколько раз, а затем так же резко падает к исходной величине. Самый понятный пример — электрический импульс, заставляющий наше сердце биться. Самое же большое количество импульсов возникает у нас в нервных клетках головного и спинного мозга. Мы мыслим и решаем уроки благодаря электрическим импульсам!

А что в электронике? В электронике импульсы применяются повсеместно. Например, в микроконтроллерах или даже в полноценных процессорах домашнего компьютера электрические импульсы задают ритм его работы. Они еще называются тактовыми, или синхро-импульсами. Порой быстродействие вычислительных машин сравнивают именно при помощи значений тактовой частоты.

Все данные внутри электронных устройств тоже передаются при помощи импульсов. Наш интернет, проводной и беспроводной, сотовая связь и даже пульт от телевизора — все используют импульсный сигнал. Попробуем выполнить несколько заданий и на собственном опыте понять особенности генерации электрических импульсов. А начнем мы со знакомства с их важными характеристиками.

1. Период и скважность импульсного сигнала

Представим себе, что мы готовимся к встрече Нового Года и нам просто необходимо сделать мигающую гирлянду. Поскольку мы не знаем, как заставить её мигать самостоятельно, сделаем гирлянду с кнопкой. Будем сами нажимать на кнопку, соединяя тем самым цепь гирлянды с источником питания и заставляя лампочки зажигаться.

Принципиальная схема гирлянды с ручным управлением будет выглядеть так:

Принципиальная схема подключения светодиодов

Внешний вид макет

Схема подключения светодиодов и кнопки

Собираем схему и проводим небольшой тест. Попробуем управлять гирляндой согласно нехитрому алгоритму:

  1. нажимаем на кнопку;
  2. ждем 1 секунду;
  3. отпускаем кнопку;
  4. ждем 2 секунды;
  5. переходим к пункту 1.

Это алгоритм периодического процесса. Нажимая на кнопку по алгоритму мы тем самым генерируем настоящий импульсный сигнал! Изобразим на графике его временную диаграмму.

Диаграмма импульсного сигнала

У данного сигнала мы можем определить период повторения и частоту. Период повторения (T) — это отрезок времени, за который гирлянда возвращается в исходное состояние. На рисунке хорошо виден этот отрезок, он равен трем секундам. Величина обратная периоду повторения называется частотой периодического сигнала (F). Частота сигнала измеряется в Герцах. В нашем случае:

F = 1/T = 1/3 = 0.33 Гц

Период повторения можно разбить на две части: когда гирлянда горит и когда она не горит. Отрезок времени, в течение которого гирлянда горит называется длительностью импульса (t).

А теперь самое интересное! Отношение периода повторения (T) к длительности импульса (t) называется скважностью.

S = T / t

Скважность нашего сигнала равна S = 3/1 = 3. Скважность величина безразмерная.

В англоязычной литературе принят другой термин — коэффициент заполнения (Duty cycle). Это величина, обратная скважности.

D = 1 / S = t / T

В случае нашей гирлянды коэффициент заполнения равен:

D = 1 / 3 = 0.33(3) ≈ 33%

Этот параметр более нагляден. D = 33% означает, что треть периода занята импульсом. А, например, при D = 50% длительность высокого уровня сигнала на выходе таймера будет равна длительности низкого уровня.

2. Генерация импульсного сигнала при помощи микросхемы 555

Теперь попробуем заменить человека и кнопку, ведь мы не хотим весь праздник включать и выключать гирлянду каждые 3 секунды.

В качестве автоматического генератора импульсов используем очень известную микросхему семейства 555. Микросхема 555 — это генератор одиночных или периодических импульсов с заданными характеристиками. По-другому данный класс микросхем называют таймерами.

Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов.

Распиновка микросхемы таймера 555

Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим, именно в нем таймер будет непрерывно генерировать импульсы с заданными параметрами.

Для примера, подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так.

Принципиальная схема

Принципиальная схема подключения таймера 555, светодиод

Внешний вид макета

Схема подключения таймера 555, светодиод

Примечание. Конденсатор C2 в схеме можно не использовать.

В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала. Делается это с помощью несложных формул, взятых из технической документации к микросхеме.

T = 1/F = 0.693*(Ra + 2*Rb)*C;          (1)

t = 0.693*(Ra + Rb)*C;          (2)

Ra = T*1.44*(2*D-1)/C;          (3)

Rb = T*1.44*(1-D)/C.          (4)

Здесь F — частота сигнала; T — период импульса; t — его длительность; Ra и Rb — искомые сопротивления. Исходя из этих формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления). Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%.

Чтобы обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые позволяют варьировать параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера!

Собственно, в предложенной выше схеме мы это уже и сделали. Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень.

Раз так, то нам нужно настроить сопротивления Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0.66, получаем:

Ra = 3*1.44*(2*0.66 — 1)/0.0001 = 13824 Ом

Rb = 3*1.44*(1-D)/0.0001 = 14688 Ом

На самом деле, если мы будет использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется поставить последовательно несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности можем добавить еще два резистора по 200 Ом.

В результате должно получиться что-то подобное:

Таймер 555 и светодиод

В этой схеме используются резисторы на 15 КОм.

3. Подключение группы светодиодов к таймеру 555

Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду. В новой схеме пять светодиодов будут включаться на 0.5 сек каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку.

Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, используем биполярный транзистор, работающий с режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000.

Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельно соединенных светодиодов должен быть равен I = 20 мА*5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид:

100 мА = (9В-2В)/R;

отсюда R2 = 7В/0.1А = 70 Ом.

Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом. А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее.

Принципиальная схема

Принципиальная схема подключения таймера 555

Внешний вид макета

Схема подключения таймера 555

Примечание. Конденсатор C2 в схеме можно не использовать.

Собираем схему, подключаем батарейку и наблюдаем за результатом. Если все работает как надо, закрепим полученные знания, сделав несколько забавных устройств.

Задания

  1. Генератор звука. В схеме гирлянды заменить группу светодиодов на пьезодинамик. Увеличить частоту звука, например, до 100 Гц. Если поднять частоту до 15 кГц, то можно будет отпугивать комаров!
  2. Железнодорожный светофор. Подключить к таймеру два светодиода таким образом, чтобы один соединялся с таймером катодом, а второй анодом. Установить частоту импульсов — 1 Гц.

Заключение

Как уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что большинству электронных устройств свойственны периодические процессы. Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже периодический, причем с изменяющимся коэффициентом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора основана на тактовом сигнале, имеющем очень точную частоту.

На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее!

Полезные ссылки

Сборник проектов на таймере 555


Изменено: